Connect with us

Aviation

Ethiopian Airlines response to the Preliminary report of flight ET 302 crash

Ethiopian Airlines

Update on ET302- Preliminary report April 04-2019

Ethiopian Airlines Aviation Group which is the largest and the most successful Aviation group in Africa, would like to acknowledge the preliminary report of the accident of ET 302/10 March, 2019 and would like to appreciate the hard work of the investigation team.

The preliminary report clearly showed that the Ethiopian Airlines Pilots who were commanding Flight ET 302/10 March have followed the Boeing recommended and FAA approved emergency procedures to handle the most difficult emergency situation created on the airplane. Despite their hard work and full compliance with the emergency procedures, it was very unfortunate that they could not recover the airplane from the persistence (of) nose diving. As the investigation continues with more detailed analysis, as usual we will continue with our full cooperation with the investigation team.

Group CEO, Tewolde GebreMariam said that “ All of us at Ethiopian Airlines are still going through deep mourning for the loss of our loved ones and we would like to express our deep sympathy and condolences for the families, relatives and friends of the victims. Meanwhile; we are very proud of our pilots’ compliances to follow the emergency procedures and high level of professional performances in such extremely difficult situations. We are also very proud of our Global standard Pilot Training Center and the Ethiopian Aviation Academy which is one of the largest and most modern in the world equipped with state of the art and latest training technologies . I would also like to take this opportunity to thank our valued customers, the travelling public, the media and Global aviation professionals for the remarkably high level of vote of confidences and strong support that you have been giving us starting from the day of this tragic accident. We will double our efforts every single day to win your confidence and earn your business. Your Safety will remain our top most priority and we will continue to work together with our partners around the world to make air travel safer and more comfortable. My highest appreciation also goes to my 16, 000 colleagues at Ethiopian Airlines for their resilience, high standards of professionalism and their continued commitment for operational excellence and their award winning customer services which enabled us to continue our business with out any operational disruption, flight delays nor flight cancellations.”

Advertisement

Aviation

Exploring the Different Types of Helicopter Rotor Systems and the Science Behind Them

Exploring the Different Types of Helicopter Rotor Systems and the Science Behind Them

Helicopters are unique aircraft that use rotating blades, called rotors, to generate lift and enable flight. The design of these rotor systems is crucial because it affects how helicopters perform, maneuver, and respond to different flying conditions.

There are several types of helicopter rotor systems, each with its own advantages and specific uses. Understanding these systems helps us appreciate the engineering behind helicopters and their diverse capabilities, from search and rescue missions to military operations and aerial photography.

In this Video, we will explore the main types of helicopter rotor systems and how they contribute to the helicopter’s functionality and performance.

1. Single Rotor System

The single rotor system is characterized by a single main rotor blade that is responsible for generating lift. To counteract the torque produced by this rotor, a tail rotor is used. This setup is essential for maintaining directional control and stability during flight.

Uses: This design is prevalent in most conventional helicopters, including iconic models such as the Bell 206 and the Robinson R22. The simplicity of the single rotor system not only reduces mechanical complexity but also enhances efficiency. As a result, it is favored for a variety of applications, including aerial tours, law enforcement, and emergency medical services, where reliability and straightforward operation are paramount.

Advertisement

2. Tandem Rotor System

The tandem rotor system features two parallel rotors of equal size that rotate in opposite directions. This counter-rotation helps to cancel out the torque that each rotor would otherwise produce, resulting in a balanced and stable flight profile.

Uses: This configuration is typically employed in heavy-lift helicopters, such as the CH-47 Chinook. The tandem design allows for an increased payload capacity and enhanced stability, making it particularly effective for transporting troops, equipment, and supplies in military operations, as well as for civilian applications like logging and construction, where heavy lifting is required.

3. Coaxial Rotor System

The coaxial rotor system consists of two rotors mounted one above the other on the same mast, rotating in opposite directions. This innovative design minimizes the need for a tail rotor, allowing for a more compact helicopter structure.

Uses: Coaxial rotor systems can be found in helicopters such as the Kamov Ka-50. This design offers several advantages, including enhanced lift capabilities, improved maneuverability, and better control in various flight conditions. These features make it particularly suitable for military applications, where agility and quick response times are crucial, as well as for specific civilian operations that require high performance in tight spaces.

4. Intermeshing Rotor System

The intermeshing rotor system consists of two rotors that rotate in opposite directions while intersecting each other, but without colliding. This unique configuration creates a highly efficient aerodynamic profile.

Uses: This system is utilized in helicopters like the Kaman K-MAX, designed specifically for heavy lifting and aerial work. The intermeshing rotors provide remarkable stability and lift capabilities, making it particularly effective for operations in confined spaces, such as urban environments or dense forests. It is ideal for missions that involve heavy external loads, including construction, firefighting, and disaster relief efforts.

Advertisement

5. Transverse rotor system

The transverse rotor system has two parallel rotors that spin in opposite directions, improving lift and stability. This design enhances the aircraft’s aerodynamic efficiency and maneuverability.

A notable example of this system is the V-22 Osprey, a tiltrotor aircraft that merges helicopter vertical lift with the speed of a fixed-wing plane. allowing the Osprey to operate in tough environments like urban areas and remote locations. It can carry heavy loads and personnel, making it suitable for troop transport, search and rescue, medical evacuation, and logistical support in military operations. Overall, the transverse rotor system enhances the V-22 Osprey’s effectiveness and operational flexibility.

6. Compound Rotor System

The compound rotor system combines traditional rotor systems with fixed wings and other aerodynamic features to enhance efficiency and speed. This hybrid approach allows for greater aerodynamic performance than standard rotorcraft.

Uses: Advanced helicopters like the Sikorsky X2 and Boeing’s DBF (Defiant) utilize the compound rotor system. These helicopters are designed for higher speeds and longer ranges, making them suitable for military operations, search-and-rescue missions, and law enforcement tasks where rapid response and extended operational capabilities are essential.

7. NOTAR system

NOTAR system replaces the traditional tail rotor with a ducted fan and directional airflow to counter the torque from the main rotor. It works by pushing air through the tail boom and out through side vents, creating thrust that stabilizes the helicopter. This design reduces noise, boosts safety, and cuts down on maintenance.

Advertisement

Uses: The NOTAR system is found in helicopters like the MD 520N and MD 902 Explorer. Without an exposed tail rotor, it lowers the risk of rotor strikes, making it safer for operations in tight spaces. Its quieter performance is ideal for missions where low noise is needed, such as urban air operations, police work, and medical evacuations.

Continue Reading

Trending