Connect with us

Aerospace

Clean Aviation SWITCH Project to Advance Hybrid-Electric and Water Enhanced Turbofan Technologies

This will be the hybrid aircraft engine of the future.

Airbus has confirmed that it will work with France, Germany, and Spain to build the Future Combat Air System (FCAS).

With the help of the European Union Clean Aviation Joint Undertaking, a collection of aerospace technology companies has announced the creation of a cooperative collaboration to create hybrid-electric and water-enhanced turbofan technology for future aircraft propulsion systems (Clean Aviation).

Indigo to add Boeing 777 wide body aircraft in its fleet.(Opens in a new browser tab)

By comparing these technologies to current state-of-the-art propulsion systems for short- and medium-range aircraft, MTU Aero Engines AG (MTU), Pratt & Whitney, Collins Aerospace (Collins), GKN Aerospace, Airbus, and others hope to show how these technologies can increase fuel efficiency and reduce aircraft CO2 emissions by up to 25%. MTU manages the consortium’s operations.

The Sustainable Water-Injecting Turbofan Comprising Hybrid-Electrics (SWITCH) project is focused on developing a novel propulsion concept built from two revolutionary and synergetic technologies: Water Enhanced Turbofan (WET) and hybrid-electric propulsion. By combining these technologies with Pratt & Whitney’s GTFTM engine architecture, the SWITCH concept aims to significantly enhance efficiency and substantially reduce emissions across the full operating envelope of an aircraft.

Advertisement

The hybrid-electric GTF powertrain will enable even greater efficiency across all phases of flight by leveraging highly efficient megawatt class electric motor generators, power electronics, and batteries to optimize the performance of the fuel-burning gas turbine. The WET concept recovers water vapor from the engine exhaust and re-injects it into the combustion chamber to significantly improve fuel efficiency, reduce NOx emissions, and lessen contrail forming emissions.

British Airways takes next step towards developing sustainable aviation fuel(Opens in a new browser tab)

Current funding for Phase 1 of SWITCH extends to 2025 and will include testing of a hybrid-electric GTF engine, WET technology and sub-system laboratory testing, and design activity around an integrated hybrid-electric and WET cycle propulsion system. Subject to successful testing of these key technologies and component designs, further phases of ground testing and flight tests are expected to follow.

Clean Aviation is a public-private partnership co-funded by the European Union between the European Commission, the aerospace industry, and research institutes, dedicated to advancing transformational aircraft technologies which will help enable net zero emissions for aviation by 2050. The project will be supported by UK Research and Innovation, and will leverage collaboration between multiple aerospace companies, universities and research organizations across 11 countries in Europe and the United States.

Advertisement
Advertisement

Aerospace

Boeing Transfers Rocket Stage to NASA, Paving Way for Human Moon Mission

Boeing Transfers Rocket Stage to NASA, Paving Way for Human Moon Mission
Image:Boeing

Boeing has achieved a significant milestone by providing NASA with the second core stage of the Space Launch System (SLS) rocket.

This crucial component, crafted at NASA’s Michoud Assembly Facility (MAF), is set to propel the Artemis II crew into lunar orbit, marking humanity’s return to deep space after a 50-year hiatus.

The monumental Boeing-built rocket stage, the largest element of the Artemis II mission, will embark on a journey aboard the Pegasus barge, traveling 900 miles to NASA’s Kennedy Space Center.

Comparison of two legendary aircraft B777x vs B747 aircraft:Click here

Upon arrival, it will be meticulously integrated with other essential Artemis II components, including the upper stage, solid rocket boosters, and NASA’s Orion spacecraft within the iconic Vehicle Assembly Building. This intricate integration process is a vital step toward the eagerly anticipated Artemis II launch, slated for 2025.

Advertisement

Boeing-built products helped land humankind on the moon in 1969, and we’re proud to continue that legacy through the Artemis generation,” remarked Dave Dutcher, vice president and program manager for Boeing’s SLS program. “Together, with NASA and our industry partners and suppliers, we are building the world’s most capable rocket and paving the way to deep space through America’s rocket factory in New Orleans.”

NASA, Lockheed Martin Reveal X-59 Quiet Supersonic Aircraft:Click here

The delivery of Core Stage 2 marks a significant achievement in the evolution of the SLS rocket. Towering over 200 feet and powered by four RS-25 engines, this core stage, coupled with two solid-fueled booster rockets, will generate a staggering 8.8 million pounds of thrust. This immense power is crucial to launching Artemis II and future missions into the vast expanse of space.

The SLS rocket stands unparalleled in its capability to transport both crew and substantial cargo to the moon and beyond in a single launch. Its extraordinary capacity will facilitate the delivery of human-rated spacecraft, habitats, and scientific missions to destinations including the moon and Mars, ushering in a new era of space exploration.

Advertisement
Continue Reading

Trending