Connect with us

Aerospace

Rosen’s Touchless Aircraft cabins for the future – Jetline Marvel

Rosen's Touchless Aircraft cabins

Rosen’s Touchless Aircraft cabins for the future – Jetline Marvel: An Oregon, USA-based company, Rosen Aviation collaborated with its partners KiPcreating (Florida, USA) and Sky-Style (Argentina) presented a project, The Maverick Project. Together, they created a conceptual environment shattering previous expectations, blending cutting-edge technology and world-class aesthetic design to achieve a transcendent vision for the future of biz-jet cabins.

Driven by customer demand for an experience beyond anything currently available, coupled with the challenge for designers that desire sophisticated elegance and beautiful cabin environments with limited space and bulky components, Rosen Aviation chose to leverage the latest in sensor and display technologies to create seamless control and unrivaled cabin experiences.

Rosen's Touchless Aircraft cabins

The Maverick Project has already garnered substantial acclaim from industry OEMs. Rosen hopes to see the future they envisioned, with the help of their creative partners, integrated into production aircraft. Previously regarded as the display specialists, Rosen’s intention for The Maverick Project was to showcase the broad expertise they possess in-cabin electronics. Research & Development continues to invest in hygienic, touchless solutions, haptic feedback, software-defined surfaces, gesture control, proximity detection, holograms, virtual windows with augmented reality, among many other state-of-the-art technologies.

Read more: British Airways’ new Club World Suites business class revealed!

Rosen's Touchless Aircraft cabins

Design et-al (Chester, United Kingdom), the publishing body that hosts the prestigious International Yacht & Aviation Design Awards each year, has selected Rosen Aviation LLC as a finalist in the “Cabin Design – Concept” category for the 2021 awards show for their work on The Maverick Project.

Read more: The 2021 Crystal Cabin Award winners – The Future of Air Travel

Aerospace

Airbus presents new Wingman concept at ILA Berlin Airshow

Airbus presents new Wingman concept at ILA Berlin Airshow

At the prestigious ILA aerospace trade show in Berlin, Airbus Defence and Space made waves by introducing its pioneering Wingman concept, marking a significant leap forward in military aviation technology.

Teaming up with Helsing, Europe’s leading defense AI and software company, Airbus showcased a framework cooperation agreement aimed at revolutionizing the realm of artificial intelligence (AI) in defense.

Airbus Wingman

The Wingman concept represents a paradigm shift in aerial warfare, introducing unmanned platforms equipped with advanced AI capabilities to augment the capabilities of manned combat aircraft. Pilots in command aircraft such as the Eurofighter command these autonomous drones, positioning them to undertake high-risk mission tasks that would traditionally pose a significant threat to manned-only aircraft.

Central to the Wingman concept is Manned-Unmanned Teaming, wherein manned aircraft serve as “command fighters,” retaining ultimate control over mission decisions while delegating tactical tasks to unmanned systems. This synergistic collaboration promises to enhance mission flexibility, increase combat mass, and minimize risk exposure for pilots, thereby bolstering overall operational effectiveness.

The capabilities of the Wingman extend across a diverse spectrum of mission profiles, ranging from reconnaissance and target jamming to precision strikes against both ground and aerial targets. Equipped with advanced sensors, connectivity solutions, and a diverse array of armaments, the Wingman stands poised to redefine the operational landscape of modern air forces.

While the Wingman model showcased at ILA Berlin represents the pinnacle of current technological innovation, it also serves as a catalyst for future design iterations. As with any pioneering concept, refinement and evolution are inevitable, with each generation of the Wingman poised to push the boundaries of aerial warfare even further.

MQ-28 Ghost Bat

Boeing introduced the MQ-28 Ghost Bat, an unmanned combat aerial vehicle (UCAV), which made its maiden flight in February 2021. Developed by Boeing Australia, the MQ-28 leverages artificial intelligence to serve as a force multiplier for manned fighter jets.

The Ghost Bat is engineered to operate in tandem with existing military aircraft, enhancing and extending the capabilities of airborne missions. This cost-effective UCAV is designed to work as an intelligent teammate, complementing and amplifying the effectiveness of manned operations in various mission profiles.

Continue Reading

Aerospace

Take First Glimpse of USAF B-21 Raider, Latest Nuclear Stealth Bomber

Take First Glimpse of USAF B-21 Raider, Latest Nuclear Stealth Bomber
Image:USAF

The United States Air Force (USAF) has unveiled the first photographs of the Northrop Grumman B-21 Raider bomber in flight.

These images were captured during test flights conducted by the B-21 Combined Test Force at Edwards Air Force Base, marking a significant milestone in the development of this sixth-generation aircraft.

Currently undergoing flight tests in California, the B-21 Raider represents the next generation of stealth bombers. With an estimated cost of around $700 million per aircraft, the B-21 Raider is poised to become a crucial component of the USAF’s arsenal for conventional Long Range Strike missions.

According to Air Force briefings, the B-21 Raider will form part of a comprehensive family of systems, encompassing Intelligence, Surveillance, and Reconnaissance capabilities, electronic warfare, communication systems, and more. Notably, the bomber will be nuclear-capable and adaptable for both manned and unmanned operations.

It boasts the flexibility to deploy a wide array of stand-off and direct-attack munitions, ensuring versatility in various combat scenarios. One of the B-21’s distinguishing features is its extensive integration of digital technology, as highlighted in discussions held during a Senate Armed Services Committee hearing.

Designed with an open systems architecture, the B-21 Raider is built to swiftly incorporate emerging technologies, ensuring its effectiveness against evolving threats over time. The B-21 Raider is slated to replace the aging B-1 Lancer and B-2 Spirit bombers, bolstering US national security objectives and providing reassurance to allies and partners worldwide.

Continue Reading

Aerospace

Aurora Flight Sciences Unveils Innovative X-Plane Design

Aurora Flight Sciences Unveils Innovative X-Plane Design

Aurora Flight Sciences, a Boeing company, has recently completed the conceptual design review for a groundbreaking high-speed, vertical lift X-plane.

This aircraft, part of the Defense Advanced Research Projects Agency (DARPA) program called Speed and Runway Independent Technologies (SPRINT), aims to demonstrate key technologies and integrated concepts that combine high speed with runway independence.

Aurora’s design features a low-drag, fan-in-wing demonstrator integrated into a blended wing body platform. This innovative approach merges the agility of vertical take-off and landing (VTOL) with exceptional speed capabilities.

The team is focused on ensuring the program’s success by setting the stage for successful flight demonstrations, showcasing a transformative capability for air mobility and Special Operations Forces (SOF) missions.

New renderings of the fan-in-wing (FIW) demonstrator show three lift fans, a more refined composite exterior, and an uncrewed cockpit. The decision to use three lift fans simplifies the demonstrator, streamlining its path to flight testing. This FIW technology can be scaled to incorporate four or more lift fans to meet future aircraft requirements, potentially leading to a new family of systems.

Additionally, while the current demonstrator is uncrewed to facilitate testing and reduce risk, the FIW technology is fully adaptable to crewed aircraft. Aurora’s concept is designed to meet or exceed DARPA’s challenging program objectives. The blended wing body platform is capable of a 450-knot cruise speed, and the embedded lift fans with integrated covers enable a smooth transition from vertical to horizontal flight.

The design also utilizes existing engine solutions, reducing development risks and timelines. Besides VTOL, the aircraft can perform short take-off and vertical landing (STOVL), super short take-off and landing (SSTOL), and conventional take-off and landing.

Continue Reading
Advertisement

Advertisement

Trending