Connect with us

Aerospace

NASA Partners With Airlines to Save Fuel, Reduce Flight Delays

NASA Partners With Airlines to Save Fuel, Reduce Flight Delays

In order to continue developing an air traffic decision-making tool that will save over 24,000 pounds of jet fuel in 2022 for aircraft leaving from Dallas-Fort Worth International Airport and Dallas Love Field Airport, NASA has reached agreements with five major U.S. airlines.

NASA’s Digital Information Platform (DIP) machine-learning tool gave flight controllers at the two Dallas airports the ability to cut down on delays and fuel consumption over the course of 2022. They were able to find chances for more effective, alternate takeoff routes using traffic estimates from the DIP-developed Collaborative Digital Departure Reroute (CDDR) technology, which decreased delays and saved fuel.

Cirium Launches the First Airline Routes Tool Based on Satellite-Based Flight Tracking(Opens in a new browser tab)

Now, DIP tools will be put to work with five new partner airlines: American Airlines, Delta Air Lines, JetBlue Airways, Southwest Airlines, and United Airlines. Researchers from DIP and the Federal Aviation Administration (FAA) will evaluate a cloud computing-based version of the CDDR tool as part of five-year NASA Space Act Agreements with these airlines.

By combining air traffic and airspace limitation data from the FAA with flight-specific surface traffic data from the five airlines and two airports, CDDR seeks to enhance the present air traffic operations at commercial airports. In order to generate traffic predictions about future runway availability and expected departure and arrival times, the programme uses machine learning to this data.

NASA Crash Tests eVTOL Concept(Opens in a new browser tab)

The five airlines will work with NASA to develop the CDDR tool further and find further possibilities to use data-driven approaches that can enhance flight planning and operations. DIP is a subproject of NASA’s Air Traffic Management (ATM-X) project and is led out of Ames. DIP’s work and partnerships contribute to the agency’s Sustainable Flight National Partnership efforts. 

Continue Reading

Aerospace

Pakistan’s Ambitious Plan to Acquire and Produce Chinese FC-31 Stealth Fighter

Pakistan’s Ambitious Plan to Acquire and Produce Chinese FC-31 Stealth Fighter

Pakistan is embarking on an ambitious endeavor to bolster its air defense capabilities with the acquisition and potential local production of the Chinese FC-31 stealth fighter jet.

Talks are reportedly underway between the Pakistan Air Force (PAF) and the Shenyang Aircraft Corporation, the developer of the FC-31, signaling a significant leap forward for Pakistan’s military aviation prowess.

The FC-31, a mid-sized, twin-engine fifth-generation fighter, promises advanced air combat capabilities, including stealth technology that surpasses anything currently in the PAF‘s fleet. With plans to retire the JF-17 production line by 2030, the FC-31 could emerge as the new flagship aircraft, offering unmatched performance and versatility.

Experts speculate that Pakistan’s interest in the FC-31 could also signal broader implications for the international market. As China develops both land and carrier versions of the FC-31, analysts foresee it becoming a cost-effective alternative to pricier options like the F-35, potentially challenging the dominance of the US aerospace industry and reshaping global strategic rivalries.

Adding complexity to the deal is China’s push for the WS-13 engine, previously rejected for the JF-17 but now under consideration for both the FC-31 and future JF-17 variants. Engine standardization could streamline logistical and maintenance processes for the PAF, further enhancing the appeal of the FC-31.

While negotiations continue, the success of the FC-31 acquisition and local production hinges on several factors, including the outcome of the WS-13 engine discussions. Pakistan’s pursuit of the FC-31 comes amidst its eagerness to replace its aging fleet, with previous attempts to upgrade its F-16s by the United States due to geopolitical pressures.

Amidst these developments, Pakistan previous interest in the Turkish-made Kaan fifth-generation fighter underscores its eagerness to replace its aging fleet. Despite previous attempts to secure upgrades for its F-16s from the United States, Pakistan’s quest for advanced aerial capabilities has led it to explore alternative avenues, with the FC-31 emerging as a promising contender in its pursuit of air superiority.

Continue Reading

Aerospace

Airbus presents new Wingman concept at ILA Berlin Airshow

Airbus presents new Wingman concept at ILA Berlin Airshow

At the prestigious ILA aerospace trade show in Berlin, Airbus Defence and Space made waves by introducing its pioneering Wingman concept, marking a significant leap forward in military aviation technology.

Teaming up with Helsing, Europe’s leading defense AI and software company, Airbus showcased a framework cooperation agreement aimed at revolutionizing the realm of artificial intelligence (AI) in defense.

Airbus Wingman

The Wingman concept represents a paradigm shift in aerial warfare, introducing unmanned platforms equipped with advanced AI capabilities to augment the capabilities of manned combat aircraft. Pilots in command aircraft such as the Eurofighter command these autonomous drones, positioning them to undertake high-risk mission tasks that would traditionally pose a significant threat to manned-only aircraft.

Central to the Wingman concept is Manned-Unmanned Teaming, wherein manned aircraft serve as “command fighters,” retaining ultimate control over mission decisions while delegating tactical tasks to unmanned systems. This synergistic collaboration promises to enhance mission flexibility, increase combat mass, and minimize risk exposure for pilots, thereby bolstering overall operational effectiveness.

The capabilities of the Wingman extend across a diverse spectrum of mission profiles, ranging from reconnaissance and target jamming to precision strikes against both ground and aerial targets. Equipped with advanced sensors, connectivity solutions, and a diverse array of armaments, the Wingman stands poised to redefine the operational landscape of modern air forces.

While the Wingman model showcased at ILA Berlin represents the pinnacle of current technological innovation, it also serves as a catalyst for future design iterations. As with any pioneering concept, refinement and evolution are inevitable, with each generation of the Wingman poised to push the boundaries of aerial warfare even further.

MQ-28 Ghost Bat

Boeing introduced the MQ-28 Ghost Bat, an unmanned combat aerial vehicle (UCAV), which made its maiden flight in February 2021. Developed by Boeing Australia, the MQ-28 leverages artificial intelligence to serve as a force multiplier for manned fighter jets.

The Ghost Bat is engineered to operate in tandem with existing military aircraft, enhancing and extending the capabilities of airborne missions. This cost-effective UCAV is designed to work as an intelligent teammate, complementing and amplifying the effectiveness of manned operations in various mission profiles.

Continue Reading

Aerospace

Take First Glimpse of USAF B-21 Raider, Latest Nuclear Stealth Bomber

Take First Glimpse of USAF B-21 Raider, Latest Nuclear Stealth Bomber
Image:USAF

The United States Air Force (USAF) has unveiled the first photographs of the Northrop Grumman B-21 Raider bomber in flight.

These images were captured during test flights conducted by the B-21 Combined Test Force at Edwards Air Force Base, marking a significant milestone in the development of this sixth-generation aircraft.

Currently undergoing flight tests in California, the B-21 Raider represents the next generation of stealth bombers. With an estimated cost of around $700 million per aircraft, the B-21 Raider is poised to become a crucial component of the USAF’s arsenal for conventional Long Range Strike missions.

According to Air Force briefings, the B-21 Raider will form part of a comprehensive family of systems, encompassing Intelligence, Surveillance, and Reconnaissance capabilities, electronic warfare, communication systems, and more. Notably, the bomber will be nuclear-capable and adaptable for both manned and unmanned operations.

It boasts the flexibility to deploy a wide array of stand-off and direct-attack munitions, ensuring versatility in various combat scenarios. One of the B-21’s distinguishing features is its extensive integration of digital technology, as highlighted in discussions held during a Senate Armed Services Committee hearing.

Designed with an open systems architecture, the B-21 Raider is built to swiftly incorporate emerging technologies, ensuring its effectiveness against evolving threats over time. The B-21 Raider is slated to replace the aging B-1 Lancer and B-2 Spirit bombers, bolstering US national security objectives and providing reassurance to allies and partners worldwide.

Continue Reading
Advertisement

Advertisement

Trending