Connect with us

Aerospace

SABRE a rocket engine designed to power aircraft directly into space..!

Airbus has confirmed that it will work with France, Germany, and Spain to build the Future Combat Air System (FCAS).

SABRE (Synergistic Air-Breathing Rocket Engine) is a concept under development by Reaction Engines Limited for a hypersonic precooled hybrid air breathing rocket engine.

The engine has been designed to achieve single-stage-to-orbit capability, propelling the proposed Skylon launch vehicle. SABRE is an evolution of Alan Bond’s series of liquid air cycle engine (LACE) and LACE-like designs that started in the early/mid-1980s for the HOTOL project.

The design comprises a single combined cycle rocket engine with two modes of operation. The air breathing mode combines a turbo-compressor with a lightweight airprecooler positioned just behind the inlet cone. At high speeds this precooler cools the hot, ram-compressed air leading to an unusually high pressure ratio within the engine.

Advertisement

The compressed air is subsequently fed into the rocket combustion chamber where it is ignited with stored liquid hydrogen. The high pressure ratio allows the engine to continue to provide high thrust at very high speeds and altitudes. The low temperature of the air permits light alloy construction to be employed which gives a very lightweight engine—essential for reaching orbit. In addition, unlike the LACE concept, SABRE’s precooler does not liquefy the air letting it run more efficiently.

After shutting the inlet cone off at Mach 5.14, 28.5 km altitude, the system continues as aclosed cycle high performance rocket engine burning liquid oxygen and liquid hydrogen from on-board fuel tanks, potentially allowing a hybrid spaceplane concept like Skylon to reach orbital velocity after leaving the atmosphere on a steep climb.

An engine derived from the SABRE concept called Scimitar has been designed for the company’s A2 hypersonic passenger jet proposal for the European Union-funded LAPCAT study.

ANA Announces New Star Wars™ Themed C-3PO(Opens in a new browser tab)

Advertisement

In November 2012, Reaction Engines announced it had successfully concluded a series of tests that proved the cooling technology of the engine, one of the main obstacles towards the completion of the project. The European Space Agency (ESA) has evaluated the SABRE engine’s pre-cooler heat exchanger and accepted claims that the technologies required to proceed with the engine’s development had been fully demonstrated.

As of July 2013, the United Kingdom has earmarked £60 million for the development of a full-scale prototype of the SABRE engine, citing the viability of its core technologies based on testing performed by the ESA.

As of June 2015, SABRE’s development continues with The Advanced Nozzle Project in Westcott, UK. The test engine, operated by Airborne Engineering Ltd, is being used to analyze the aerodynamics and performance of the advanced nozzles that the SABRE engine will use, in addition to new manufacturing technologies such as the 3D-printed propellant injection system.

Source: Wikipedia. Pictures: Reaction engines Ltd.

Advertisement

Liked it..!? 

Share with your friends and Family 

Advertisement

Aerospace

Boeing Transfers Rocket Stage to NASA, Paving Way for Human Moon Mission

Boeing Transfers Rocket Stage to NASA, Paving Way for Human Moon Mission
Image:Boeing

Boeing has achieved a significant milestone by providing NASA with the second core stage of the Space Launch System (SLS) rocket.

This crucial component, crafted at NASA’s Michoud Assembly Facility (MAF), is set to propel the Artemis II crew into lunar orbit, marking humanity’s return to deep space after a 50-year hiatus.

The monumental Boeing-built rocket stage, the largest element of the Artemis II mission, will embark on a journey aboard the Pegasus barge, traveling 900 miles to NASA’s Kennedy Space Center.

Comparison of two legendary aircraft B777x vs B747 aircraft:Click here

Upon arrival, it will be meticulously integrated with other essential Artemis II components, including the upper stage, solid rocket boosters, and NASA’s Orion spacecraft within the iconic Vehicle Assembly Building. This intricate integration process is a vital step toward the eagerly anticipated Artemis II launch, slated for 2025.

Advertisement

Boeing-built products helped land humankind on the moon in 1969, and we’re proud to continue that legacy through the Artemis generation,” remarked Dave Dutcher, vice president and program manager for Boeing’s SLS program. “Together, with NASA and our industry partners and suppliers, we are building the world’s most capable rocket and paving the way to deep space through America’s rocket factory in New Orleans.”

NASA, Lockheed Martin Reveal X-59 Quiet Supersonic Aircraft:Click here

The delivery of Core Stage 2 marks a significant achievement in the evolution of the SLS rocket. Towering over 200 feet and powered by four RS-25 engines, this core stage, coupled with two solid-fueled booster rockets, will generate a staggering 8.8 million pounds of thrust. This immense power is crucial to launching Artemis II and future missions into the vast expanse of space.

The SLS rocket stands unparalleled in its capability to transport both crew and substantial cargo to the moon and beyond in a single launch. Its extraordinary capacity will facilitate the delivery of human-rated spacecraft, habitats, and scientific missions to destinations including the moon and Mars, ushering in a new era of space exploration.

Advertisement
Continue Reading

Trending