Connect with us

Aerospace

How an aircraft seat is made : Everything You Need To Know

How an aircraft seat is made : Everything You Need To Know

We’ll review the design of airplane seats in this post. The majority of aircraft manufacturers, including Boeing, Airbus, Embraer, and Bombardier, are constantly concerned with providing passengers with the most comfortable seats. Nonetheless, it should still be as safe as possible and as light as possible for aircraft.

According to the demands of the airlines, aircraft manufacturers must have various levels of seat configuration. Some airlines prioritize economy seats, while others prioritize first-class and business-class seating arrangements. The passenger’s choice of ticket price completely determines the seat assignment they receive; if they pay more, they receive a higher level of comfort.

Advertisement

Airbus Airspace has designed seats that increase the level of comfort within the same and provide feedback to the design team for future improvements in the seats based on the comfort of the passengers. We anticipate that the majority of passengers on the flight will obey the seatbelt sign. With the new design, if someone forgets to fasten their seatbelt, the pilot will be notified. This definitely aids airline pilots in better understanding the safety of the passengers.

Aircraft seats in Airbus aircraft are typically designed and manufactured by specialized seat manufacturers and then integrated into the aircraft during the assembly process. Airbus offers a range of seating options for its aircraft, including economy, premium economy, business, and first-class seats. These seats are designed with a range of features such as adjustable headrests, footrests, and lumbar support, as well as options for in-flight entertainment systems and power outlets.

Advertisement

In terms of sensors, Airbus aircraft use a wide range of sensors throughout the aircraft to monitor and control various systems, including the flight control system, engines, fuel system, hydraulic system, and more. These sensors are typically connected to onboard computers and avionics systems, which use the data from the sensors to make decisions and provide feedback to the pilots.

How the seats on airplanes are made.

Aircraft seats are typically manufactured using a combination of advanced materials and specialized manufacturing techniques to ensure they meet strict safety and performance standards. Here’s a general overview of the manufacturing process:

Advertisement
  1. Design and Engineering: The seat design is typically created using computer-aided design (CAD) software, which allows engineers to create 3D models of the seat and test its performance in various scenarios.
  2. Materials Selection: Aircraft seats are typically made from lightweight materials such as carbon fiber composites, aluminum, and high-strength alloys. These materials are chosen for their strength, durability, and weight-saving properties.
  3. Cutting and Shaping: Once the materials are selected, they are cut and shaped using advanced manufacturing techniques such as laser cutting, water jet cutting, or CNC machining. This allows for precise cutting and shaping of the various seat components.
  4. Assembly: The various seat components (such as the frame, cushions, armrests, and headrests) are then assembled together using specialized tools and equipment. This typically involves riveting, welding, or bonding the various components together to create a sturdy and durable seat.
  5. Testing and Certification: Once the seat is assembled, it undergoes a rigorous testing and certification process to ensure it meets all applicable safety and performance standards. This may involve testing for impact resistance, fire resistance, durability, and other factors.
  6. Installation: Finally, the seats are shipped to the aircraft manufacturer or airline for installation in the aircraft. This typically involves a team of technicians installing the seats in the aircraft and ensuring they are properly secured and functioning as intended.

Overall, the manufacturing process for aircraft seats is highly specialized and involves advanced materials, precision engineering, and rigorous testing to ensure the highest levels of safety and performance.

He is an aviation journalist and the founder of Jetline Marvel. Dawal gained a comprehensive understanding of the commercial aviation industry.  He has worked in a range of roles for more than 9 years in the aviation and aerospace industry. He has written more than 1700 articles in the aerospace industry. When he was 19 years old, he received a national award for his general innovations and holds the patent. He completed two postgraduate degrees simultaneously, one in Aerospace and the other in Management. Additionally, he authored nearly six textbooks on aviation and aerospace tailored for students in various educational institutions. jetlinem4(at)gmail.com

Aerospace

China is secretly testing its next-generation medium combat helicopter Z21

China is secretly testing its next-generation medium combat helicopter Z21

China consistently keeps aviation enthusiasts surprised with its advancements in fighter jets and other aircraft. Leading the pack in Asia, China continuously pushes boundaries in developing domestically-built aircraft.

Recently, images circulating on the internet reveal China’s latest creation, the Z-21 helicopter. Resembling its predecessor, the Z-10, this helicopter boasts enhanced fighter capabilities. The emergence of these images sparks questions regarding the fate of plans to acquire Russian-made Ka-52K attack helicopters, particularly the naval version.

Advertisement

Observing the helicopter in flight, it shares design elements with the Harbin Z-10, notably in the front fuselage and cockpit canopy. The wing stubs for weapon mounts exhibit similar shapes, though with less pronounced angular features. With a tandem seating arrangement, the Z-21 also draws comparisons to the Mil Mi-28, featuring an elongated body with five rotor blades and weapon bays on its sides.

The unveiling of the Z-21 has triggered speculation about its potential role in future military operations. Analysts suggest that beyond its firepower, its introduction could signal significant technological advancements. There’s particular interest in whether China will incorporate a ‘manned-unmanned teaming’ system akin to later Apache models, enabling the Z-21 to control armed drones for reconnaissance and attacks, reducing risks to the helicopter itself.

Advertisement

The emergence of the Z-21 underscores China’s increasing military prowess and its commitment to developing cutting-edge weaponry. Its deployment and capabilities will be closely monitored, especially concerning regional security dynamics.

The helicopter presents a significant challenge to American-built Apache and other medium helicopters, boasting superior capacity for flying at higher altitudes and more powerful speed and combat capabilities, thus enhancing its effectiveness on the battlefield. On the other hand, amidst ongoing Indian border tensions, this aircraft is poised to play a crucial role in surveillance along the sensitive China border and beyond.

Advertisement

Advertisement
Continue Reading

Aerospace

Qantas Airbus A330 Makes Safe Landing After Engine Blowout

Woman spends tortuous three months trying to resolve huge Qantas errors

A Qantas Airbus A330 Aircraft, flight number QF781, has landed safely without incident in
Perth after the passengers on the Perth-bound flight reported hearing a ‘loud bang’ from one
side of the twin-engined plane engine. The Airbus A330 aircraft made a priority landing at
Perth Airport around 9:37pm local time on 25 March, arriving approximately 52 minutes
behind schedule.


Upon landing, emergency services met with the aircraft on the tarmac. However, the aircraft
taxied to the gate without assistance, with the passengers disembarking normally.
The ‘loud bang’ heard by passengers happened due to a mid-air engine blowout, therefore
resulting in the pilots having to manually shut off the affected engine, together with
requesting a priority landing into Perth Airport. Qantas also added in a statement that the
Airbus A330 aircraft was designed to operate with one engine too.

Advertisement


Qantas QF781 is a daily scheduled flight from Melbourne to Perth, utilising the Airbus A330
on the route. The Aircraft in question is VH-EBA, an approximately 21 years aircraft,
equipped with 2 GE CF6 engines according to airfleets.net. The Airbus A330 have been a
frequent regional workhorse in Qantas’ fleet, connecting major australian cities with major
destinations within Asia. the Airbus A330 is also used on high-density domestic routes,
similar to QF781, from Melbourne to Perth.

Advertisement

Engine Issues – Should you be concerned?


While engine issues are highly uncommon due to the stringent checks and quality control on
each component within the engine, there might still be exceptional occasions where such
incidents happen. However, while recognising the risks of dual engines, Aircraft
Manufacturers and Organisations have actually came up with standards so as to ensure that
an aircraft can also land on a single engine, similar to what we saw on QF781.


One of the most well known standard is Extended-range Twin-engine Operations
Performance Standards (ETOPS) which is an acronym for twin-engine operation in an
airspace further than one hour from a diversion airport at a designated one engine
inoperable speed. This ensures that twin-engined aircraft could safely operate routes over
water or remote land without an alternative airport near the flight path, which once required
aircraft with 3 or 4 engines to fly on that route.

Advertisement


In this case, the Airbus A330 has been certified to fly ‘Beyond ETOPS 180’, and have
received ETOPS 240 certification, which is a certification to enable the twin-engined aircraft
to fly for up to a maximum of 240 minutes with 1 engine inoperative in a cruise condition.
Currently, most twin-engined widebody aircraft in operation would generally have an ETOPS
certification of at least ETOPS 180, with the new Airbus A321LR also having ETOPS 180
certification, therefore enabling the narrowbody to fly long haul flights.

Advertisement
Continue Reading

Aerospace

Boeing CEO Resigns Amid 737 MAX Crisis, Ignites Management Overhaul

Boeing CEO Resigns Amid 737 MAX Crisis, Ignites Management Overhaul

Boeing CEO Dave Calhoun has announced his resignation amidst the ongoing 737 MAX crisis, signaling a significant top management shakeup at the aerospace giant.

While Calhoun will continue leading the company until the end of 2024, his decision comes amid mounting pressure following a series of setbacks, including the recent incident involving an Alaska Airlines flight. This departure coincides with the retirement of Boeing Commercial President and CEO Stan Deal, who is succeeded by Stephanie Pope, the current Chief Operating Officer.

Advertisement

The announcement, made by Larry Kellner, boeing products chairman, outlines a broader restructuring within the company’s leadership. Steve Mollenkopf, a Boeing director since 2020 and former CEO of Qualcomm, will take over as chairman and lead the board in selecting a new CEO. This strategic move comes at a critical juncture as boeing airplanes
faces intense regulatory scrutiny and production constraints due to safety and quality issues.

The market’s initial response to the news was positive, with Boeing’s shares rising by 2 percent before regular trading. However, the boeing aircraft company stock had experienced a significant decline earlier in the year, reflecting investor concerns about boeing distribution aviall the ongoing challenges and uncertainties surrounding the 737 MAX program.

Advertisement

Calhoun stressed the company’s commitment to transparency, safety, and quality in a letter to employees.“We must continue to respond to this accident with humility and complete transparency. We also must inculcate a total commitment to safety and quality at every level of our company,” he said.

“The eyes of the world are on us, and I know we will come through this moment a better company, building on all the learnings we accumulated as we worked together to rebuild Boeing over the last number of years.”

Advertisement
Continue Reading

Aerospace

Airbus and Boeing wants to buy Spirit Aerosystem

Airbus and Boeing wants to buy Spirit Aerosystem

In the dynamic landscape of aerospace manufacturing, two industry giants, Airbus and Boeing, are eyeing a significant acquisition: Spirit aerosystems.

With Airbus confirming its interest in acquiring parts of the Spirit Aerosystems business, the spotlight shifts to Northern Ireland, where Spirit operates a major wing manufacturing facility for the Airbus A220.

Advertisement

Employing over 3,000 individuals, Spirit AeroSystems stands as one of Northern Ireland’s foremost manufacturing enterprises, underscoring its pivotal role in the region’s economy. However, the potential acquisition has taken an intriguing turn with Boeing also entering the fray, signaling its intent to engage in talks regarding the purchase of Spirit.

While boeing erp system interest in Spirit is clear, it’s unlikely that the aerospace giant would retain the parts of the business dedicated to supplying airbus. In contrast, Airbus sees an opportunity to strengthen its foothold in the industry by potentially acquiring select assets from Spirit.

Advertisement

In a recent interview with CNBC, Airbus’s chief financial officer, Thomas Toepfer, acknowledged the possibility of acquiring certain work packages from Spirit. Although the discussions are in nascent stages, Toepfer emphasized the importance of maintaining a stable relationship with Spirit, highlighting their collaborative efforts to enhance performance in recent months.

On the other hand, boeing official confirmation of ongoing discussions underscores its commitment to aviation safety and quality. With the potential reintegration of boeing spirit aerosystems into boeing distribution inc aviall operations, both companies envision a strategic alignment aimed at optimizing efficiency and upholding excellence in aircraft production.

Advertisement
Continue Reading

Trending